Table S1: Yeast strains used in these analyses. BY4741: MATa; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0 $trf4\Delta$: MATa; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0, $trf4\Delta$::kanMX trf5: MATa; $his3\Delta1$; $leu2\Delta0$; $lys2\Delta0$; $ura3\Delta0$, $trf5\Delta$::kanMX4 $trf4\Delta$, GAL::trf5: MATa; $his3\Delta1$; $leu2\Delta0$; $lys2\Delta0$; $ura3\Delta0$, $trf4\Delta$::kanMX4, HisMX6-pGAL-3HA::trf5 $rrp6\Delta$: MATa; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0, $rrp6\Delta$::natMX $rrp6\Delta$, $trf4\Delta$: MATa; $his3\Delta1$; $leu2\Delta0$; $lys2\Delta0$; $ura3\Delta0$, $trf4\Delta$::kanMX, $rrp6\Delta$::natMX $rrp6\Delta$, trf5: MATa; $his3\Delta1$; $leu2\Delta0$; $lys2\Delta0$; $ura3\Delta0$, $trf5\Delta$::kanMX4, $rrp6\Delta$::natMX GAL::mtr4: MATa; his3\(\Delta\)1; leu2\(\Delta\)0; lys2\(\Delta\)0; ura3\(\Delta\)0, HisMX6-pGAL-3HA::mtr4 GAL::rrp41: MATa; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0, HisMX6-pGAL-3HA::rrp41 GAL::rrp44: MATa; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0, HisMX6-pGAL-3HA::rrp44 TRF5-TAP: MATa; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0, TRF5-TAP-URA3 TRF5- $TAP\ DADA:\ MATa$; $his3\Delta1;\ leu2\Delta0;\ lys2\Delta0;\ ura3\Delta0,\ TRF5\ (D233A,D235A)$ -TAP- URA3 TRF5-TAP trf4D: MATa; his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0, $trf4\Delta$::kanMX, TRF5-TAP-URA3 # Table S2. Hybridization probes used in this work. Major RNA species detected in Figs. 1-3 are indicated in brackets. #### 1-5 are maicated in brackets. 003 (27SA₂, 23S pre-rRNA) TGTTACCTCTGGGCCC 004 (20S, 23S pre-rRNA) CGGTTTTAATTGTCCTA 007 (25S) CTCCGCTTATTGATATGC 008 (18S) CATGGCTTAATCTTTGAGAC 015 (5.8S) TTTCGCTGCGTTCTTCATC 041 (5S) CTACTCGGTCAGGCTC 020 (7S, 5.8S+30, 6S, 27S pre-rRNA) TGAGAAGGAAATGACGCT 033 (5' ETS) CGCTGCTCACCAATGG 202 (U14) TCACTCAGACATCCTAGG 214 (U24) TCAGAGATCTTGGTGATAAT 403 (PGK1) ACCGTTTGGTCTACCCAAGTGAGAAGCCAAGACA 499 (TSA1) GGAGTATTCGGAGTCAGTGGAGGCGAAAAGAACT ### Table S3. Other oligonucleotides used in this work. RRP41F1 UP45: ATTTACAAAAAAACTTTAGTGCCATAACTACAGCAGGATCATCATGAATT CGAGCTCGTTTAAAC RRP41R1 DN45: ATCGAGACGTAGCCCTTCTGGCGAGTATATTTCTAGTCTTGACATG CACTGAGCAGCGTAATCTG RRP44F1 UP45: AACGAGTTTTATTTATCATACTTGCATCATACAGGCCAAAACAAC GAATTCGAGCTCGTTTAAAC RRP44R1 DN45: ATCTGCAAGTCTCTTCCGTCTGGGGGCGATAGCGGGAACTGA CATGCACTGAGCAGCGTAATCTG TRF5F2 UP45: GCTCAAACGAGAAGGGACTACTGGCTCTCTAAAGGCCAGG CTCTTTCCATGGAAAAGAGAAG TRF5R2 DN45: TATTCTTGTATAAATAGTAAATAGTCTATAAGAGTCTATATTG TGTACGACTCACTATAGGG TRF5 MUT1: TTGCCGGGTTCTGCAATTGCATGTGTCGTAAAC TRF5 MUT2: GTTTACGACACATGCAATTGCAGAACCCGGCAA ## **Legend to Supplementary Figure S1** A: Structure of the yeast pre-rRNA and locations of oligonucleotides used. The 35S pre-rRNA contains the sequences of the mature 18S, 5.8S and 25S rRNAs, which are separated by internal transcribed spacers 1 and 2 (ITS1 and ITS2) and flanked by the 5 and 3' external transcribed spacers (5'ETS and 3'ETS). B: The yeast pre-rRNA processing pathway. A complex processing pathway converts the 35S pre-rRNA primary transcript to the mature rRNAs. In wild-type cells, the 35S pre-rRNA is cleaved at site A₀ producing the 33S pre-rRNA. This molecule is rapidly cleaved at site A₁ to produce the 32S, which is cleaved at site A₂ releasing the 20S and 27SA₂ pre-rRNAs. The 20S pre-rRNA is exported to the cytoplasm where it is cleaved at site D, by an unidentified enzyme, to generate the mature 18S rRNA. 27SA₂ is processed via two alternative pathways. It is either cut at site A₃ to generate 27SA₃, which is then trimmed to site B_{1S}, producing 27SB_S. Alternatively, it can be processed to 27SB_L by an as yet unknown mechanism. 27SB_S and 27SB_L are matured to the 5.8S and 25S following identical pathways. Cleavage at site C₂ generates the 7S and 26S pre-rRNAs. The 7S pre-rRNA is digested 3' to 5' to 6S pre-rRNA and then to the mature 5.8S rRNA. The 26S pre-rRNA is digested 5' to 3' to the e mature 25S rRNA. During this maturation the rRNA regions will assemble with the 80 ribosomal proteins, and the pre-rRNAs will transiently associate with ~170 protein processing and assembly factors and ~70 snoRNAs. C: Cartoons of the predicted structures of aberrant pre-rRNA species detected in $rrp6\Delta$ strains. The 23S and 21S RNAs are aberrant intermediates, which are generated by premature cleavage at site A₃, We have not mapped the ends of the 17S' species but analyses of other ribosome synthesis mutants identified a similar RNA that has a 3' end at site A₃ and 5' ends at heterogeneous positions within the mature 18S rRNA sequence. This may arise from inefficient 5' degradation of the 23S and 21S species.